
D! T! , IUT 10 STATE F,77T A
Approved for Public Release

Distribution Unlimited

An Implementation of CuPIDS: Evaluating the Effectiveness of Multi-processor
Information System Security

Blinded

Abstract tects. Realizing some of our goals, such as complete visibil-
ity into the runtime state of a protected process, required the

The Co-Processing Intrusion Detection System (CUPIDS) project addition of a CuPIDS specific application programming in-

explores practical improvements in information system security terface (API) into both the operating system and system run-
and survivability through dedicating computational resources to time libraries as well as the protected process itself. Finally,
system security tasks inashared rsucmulti-processor (MP) demonstrating the efficacy of our architecture required that

architecture. Our research explores ways in which this architec- demonstrati ng t tacy of to detecture re spond
ture offers improvements over the traditional uni-processor (UP)takes CuPIDS to detect and respond
murel offersimprovements over thesribes traditailsonal u implc e nr (to an illegitimate event and compare this result to those pro-
model of security. This paper descri bes the details of an implemen- duced by more conventional architectures. The simultane-

tation of such a system. This prototype is used to validate our re- ous nature of D ertion s pose chensinuthis

search theses and explore some of the performance benefits and regarure we needed omeas perforane im-

tradeoffs of dedicating computational resources to computational pact the architecture imposes on a realistic system. The im-

tasks as well as the cost of creating and using such a system. plementation process allowed us to evaluate the likely costs

a developer of a CuPIDS application will incur.
1. Introduction and Philosophy CuPIDS represents a paradigm shift in information sys-

tem security-one in which we shift away from the standard
Our primary research thesis for CuPIDS is that a tightly uni-processor intrusion detection (StUPIDS) model used

focused, parallel monitoring process can detect illegitimate by most architectures in this domain to a multi-processor
behavior more quickly than can a process operating in either model in which highly focused monitoring tasks run si-
scheduler-interleaved or interposing mode. Our experimen- multaneously with the process they protect. Our results un-
tal results thus far provide solid support for that thesis; how- cover gains in detection speed while incurring reasonable
ever, transforming the theory into an architecture, and the and minimal overhead costs. We demonstrate that running
architecture into a prototype which allows us to explore the concurrently with attack code affords CuPIDS opportuni-
validity of the theory posed a number of challenges. These ties to detect and respond to attacks that are not available
difficulties included efficiency related concerns, host oper- to StUPIDS. Additionally, because the opportunity exists
ating system and application integration, and performance to detect attacks while they occur without waiting for a
measurements. The efficiency concerns include both system context-switching event (either between user processes or
runtime performance and the increased workload on the ap- between user and kernel mode) CuPIDS is able to respond
plication developer imposed by the CuPIDS architecture, more quickly and attacks are detected in realtime' and with

A cornerstone of the CuPIDS philosophy is that secu- high fidelity. These results represent advantages that are dif-
rity is more important than raw performance-particularly ficult or impossible to achieve on a uni-processor system-
with regards to mission critical applications and servers- no matter how powerful.
we also recognize that in order for this research to be use- The focus of this paper is on the tension between usabil-
ful it must operate without high performance costs as per- ity and security. We evaluate of the psychological accept-
ceived by system users and developers. For the former ability [2] of the CuPIDS architecture--does it as a secu-
group we explore the use of hardware to accelerate secu- rity mechanism make the system as a resource more diffi-
rity tasks which have primarily been handled by software. cult to utilize or less efficient, and if so by how much? This
Examples include enforced parallel security monitoring and paper describes an implementation of CuPIDS in which we
exploration of ways in which system events can be effi- briefly discuss the origins and architecture, and then delve
ciently generated and moved through the CuPIDS architec- into what we have learned in building a working prototype
ture. This experimentation helped us define how CuPIDS
integrates into the operating system and applications it pro- 1 As defined by Kuperman in [1]

20050712 137

and what the runtime and developmental costs are likely ory locations in use by the production process as well as a
to be. Using commodity hardware and lightly customized much larger set of monitoring capabilities.
commodity software we demonstrate that the performance CuPIDS is similar to the work done in external modeling
impact of the CuPIDS architecture is modest and tolerable. of a process' activity. Examples of such work include the re-

search of Haizhi Xu et al. in using context-sensitive moni-

2. Background toting of process control flows to detect errors[5]. They de-
fine a series of "waypoints" as those points along a normal

The motivation and architecture of CuPIDS is discussed flow of execution where an application dips into the system

in [citation blinded] and initial performance results as well call interface. They demonstrated good results in detecting

as discussion of CuPIDS ability to perform self-protection attempts to access system resources by a subverted process.

and self healing are presented in [citation blinded]. CuPIDS makes use of a similar idea to their waypoints in

We assume the reader is familiar with the Intrusion De- its checkpoints, those points in both the interactive and pas-

tection System (IDS) literature and the threat model that sive systems where CuPIDS is notified of events in which it

body of research addresses. Axelsson's in-depth, thorough is interested; however, CuPIDS checkpoints are much finer-

taxonomy and survey of the field of intrusion detection in grained and are generated within the production process as

2000 is a good starting point for those unfamiliar with the well as its interaction with the external environment. As an

field [3]. We draw from those techniques and augment them example, CuPIDS uses function call entry and exit informa-

in ways that make use of the MP paradigm. Many of the spe- tion to perform rough granularity program counter track-

cific intrusion detection techniques a CuPIDS will use differ ing and validation as well as model a program stack for use

from their StUPIDS counterparts only in the real-time, si- in detecting illegitimate control flows within a process code

multaneous monitoring nature of their use. As intimated by segment. Other closely related work includes that done by

its name CuPIDS is currently focused on intrusion detec- Feng et al. [6]. The authors explored extracting return ad-

tion (ID); however, the ideas embodied by the architecture dresses from the call stack and using abstract execution path

are general in nature. We anticipate these results will be di- checking between pairs of points to detect attacks. Finally,

rectly useful in the related domains of software debugging Gopalakrishna et al. [7] present good results in performing

and computer forensics, and we drew inspiration and ideas online flow- and context-sensitive modeling of program be-

from these communities while exploring the ideas which havior. Gopalakrishna's Inlined Automaton Model (IAM)

turned into CuPIDS. addresses inefficiencies in earlier context-sensitive models

We are concerned with a general threat model that as- [8, 9] by using inlined function call nodes to dramatically
reduce the non-determinism in their model while applying
compaction techniques to reduce the model's memory us-

"* Processes running at any privilege level in the produc- age. Using an event stream generated by library call inter-

tion parts of the system may be compromised at any positioning, IAM is shown to be efficient and scalable even
time after boot is complete. in a StUPIDS architecture. The techniques used by TAM fit

naturally into the CuPIDS architecture. All of these mod-
"* Attacks may come from local or external users or a els can be run as CuPIDS shadow processes (CSP) 2. The

combination of both. model simulations can be run as CSPs, each getting its in-

"* Attacks may succeed without ever causing a context puts from the CuPIDS event streams.
switching event. Offloading security work onto co-processor has been ex-

The current CuPIDS prototype implements a form of plored by research such as that discussed in [10, 11, 12,

runtime invariant testing similar to that described by Patil 13, 14]. An example of the latter category includes the
work done by Zhang, et al. in describing how a crypto co-and Fischer [4]. They discuss how including runtime er- poesri sdt efr oehs-ae nrso e

ror checking may slow applications by as much as a fac- processor is used to perform some host-based intrusion de-ror hecingmay lowappicatonsby s muh a a ac- tection tasks[13]. That research examines the possibility of

tor of 10. This is too expensive for most application; there- usin ha t re sechrexam in g the sstem

fore once debugging and testing is complete, runtime er- using hardware designed for securely booting the system
to run an intrusion detection system. The benefits from do-

ror checks are disabled or removed. The authors responded ing so include protecting the IDS processor from the pro-
by creating guard programs that model the execution of the ingtson protecting the IDS p or from the pro-
production program-including the runtime error checks- d processor onto one dedicated for that task-goals CUPIDS
but only at the pointer and array access level. Offline, inter- shares. Strengths of this approach include high attack resis-
leaved, and parallel versions of this architecture were dis- tance for code running in the co-processor system. Draw-
cussed. We use the idea of exporting runtime checks to a
shadowing process; however, our work differs from theirs
in that we focus on real-time monitoring of the actual mem- 2 Described in Section 3

backs of the approach include the lack of ready visibility vices and run on one CPU while the light components rep-
into the actions of the main processor and operating sys- resent the CuPIDS monitors and run on a separate CPU. The
tem. These strengths and drawbacks also exist in the use of regions of overlap depict CuPIDS ability to monitor the re-
virtual machine architectures. source usage of production components.

Garfinkel and Rosenblum discuss a novel approach to
protecting IDS components [15]. Here the the primary goal
of enhancing attack resistance is met by isolating the IDS V•,S
in virtual machine monitor (VMM). The VMM approach

has much in common with the reference monitor work dis-
cussed by Anderson [16] and Lipton [17] in that it pro-
vides a means by which the IDS can mediate access be-
tween software running in the virtual host and the hardware.
It can also interpose at the architecture interface, which
yields a better view into the system operation by provid-

ing visibility into both software and hardware events. A tra- CPDSSYICm5Wii Wr
ditional software-only IDS does not have this advantage.
Of course, the IDS running in the VMM has visibility only
into hardware-level state. This means that the IDS can see
physical pages and hardware registers, but must be able to Figure 1. Basic software architecture
determine what meaning the host O/S is placing on those
hardware items. By running as part of the host O/S, Cu-
PIDS maintains complete visibility into the software state The operating system as well as user processes are di-
of the entire system, but currently lacks the protection af- vided into components that are intended to run on separate
forded VMs and secure co-processor architectures. Future CPUs. The intent behind this separation is twofold: perfor-
work on CUPIDS will use hardware protection mechanisms mance, where we seek to minimize the runtime penalty im-
such as those in the Intel IA32 [18] processor line to pro- posed by the security system, and protection, where we are
vide protection of security specific components as well as concerned with the completeness of detection. By ensuring
critical operating system components. the processes responsible for detecting bad events are ac-

tively monitoring the system during periods in which bad
3. CuPIDS Architecture events can occur-the CuPIDS architecture requires that

when a CPP is executing its associated CSP is also on a
The CuPIDS architecture was initially presented in [ci- CPU-we provide a real-time detection capability (using

tation blinded], and is summarized here. Kuperman's definition). The system protection derives in
part from the ability to detect bad events as they occur but

3.1. High Level Design before the results of these events can cause a system com-
promise.

CuPIDS operates using the facilities and capabilities af- A program intended to operate in CuPIDS is divided into
forded by a general purpose symmetrical multi-processing two components, a CuPIDS monitored production process
(SMP) computer architecture. Common operating systems (CPP) and a shadowing CuPIDS process (CSP) as depicted
such as Windows, Linux, and FreeBSD running on SMP ar- in Figure 2.
chitectures use the CPUs symmetrically, attempting to allo- As the figure shows, CuPIDS processes differ from the
cate tasks equally across the CPUs based upon system load- traditional process paradigm in the asymmetric sharing of
ing [19]. CuPIDS differs from these architectures in that at memory between the CSP and CPP. The CPP is a normal
any point in time one or more of the CPUs in a system are process and contains the code and data structures that are
used exclusively for security related tasks. This asymmetri- used to accomplish the tasks for which the program is de-
cal use of processors in a SMP architecture is a significant signed. It may also contain code and data structures with
departure from normal computing models, and represents a which information about the state of the running process is
shift in priority from performance, where as many CPU cy- communicated to the security component. In addition to the
cles as possible are used for production tasks, to security normal process code and data structures, the CSP's virtual
where a significant portion of the CPU cycles available in memory is modified to contain portions of the CPP's vir-
a system are dedicated solely to protective work. One pos- tual memory space (depicted in the figure as Shadow Mem-
sible CuPIDS software architecture is depicted in Figure 1. ory). This allows the CSP to directly monitor the activities
The dark components represent production tasks and ser- of the production component as it executes.

formation in a form that can be used by the CSP.
nThe compiler is also used to automatically instru-

ment the CPP by adding event generation hooks into
UCPIDS Shw N each function prologue and epilogue. Invariants are

S. .currently snippets of code that could be directly in-
cluded in the CPP's code (similar to the run-time
debugging tests discussed earlier). They are com-
piled into the CSP's code, and when one is used, it is

"I Mgiven appropriate pointers into the CPP's virtual mem-
ory space and executed. Currently these are manually
written; however, work is underway to allow a pro-

Sk .grammer to indicate, via pragmas, to the compiler that
Sa particular variable needs protection and the com-

•[Text piler will automatically generate the invariant testing

SIcode in the CSP.

Figure 2. CSP and CPP details Runtime execution monitoring Runtime monitoring in-
cludes a number of activities and capabilities that give
the CSP visibility into the operation of the CPP. An ex-

Our initial work assumes the CPP developer is aware of ample includes generating events so the CSP is made
CuPIDS and the CPP communicates its state to the CSP by aware of the creation, accesses to, and deletion of
sending a stream of messages about events of interest to Cu- a protected variable's lifespan. Other events ex-
PIDS. Later work will investigate what types of real-time port an execution trace to CuPIDS via function call
monitoring are possible for uninstrumented applications, monitoring, and interactions between the CPP and ex-

ternal environmental entities such as calls to runtime
3.2. Protective Activities libraries and the operating system. Call monitor-

ing consists of the CPP sending a stream of func-
The CuPIDS architecture currently supports three types tion/library/system call entry and exit events to the

of protective activities: Application startup/shutdown vali- CSP. The CSP then uses a model based upon how the
dation, state monitoring, including invariant testing, and ex- CPP is supposed to operate to verify if that stream is le-
ecution monitoring, gitimate.

Application startup/shutdown: Startup tasks include ver- In addition to the direct monitoring of the CPP per-
ifying the authenticity of both the CSP and CPP as formed by the CSP, CuPIDS has a number of background
well as any supporting configuration files. The CSP is capabilities that augment the CSP's capabilities. These in-
loaded and started executing. It then loads the CPP into clude the ability to intercept and direct low-level system ac-
memory, establishes any needed hooks into the CPP's tivities such as interrupts and signals, controlling the sys-
VM space, initializes the various event communication tem scheduler to enforce the segregation of the CuPIDS and
systems, and finally starts the CPP running. Shutdown system CPUs and ensuring that whenever a CSP is cho-
tasks include verifying that the CPP shutdown path fol- sen to run, its associated CSP is also placed on the Cu-
lowed a legitimate code path. Additionally, any run- PIDS' CPU. Additionally, CuPIDS provides a streamlined,
time history data is saved to disk. interrupt-based, communication interface for moving event

State monitoring & Assertion verification: The en- records from the CPP to the CSP running on a different

hanced CuPIDS API in the kernel allows a CSP to CPU.

monitor nearly all aspects of the CPP's operating en-
vironment and state, including its entire VM space 3.3. Self-healing/Self-protection
and any related kernel data structures and exclud-
ing only the internal processor state while the CPP There are a number of well-known-to-be-dangerous li-
is on a CPU. One use of this capability is invari- brary and syscalls [20]. Among the most common exploits
ant testing. Invariant testing is a two stage process publicly available are buffer overflows that use unsafe string
involving pre-compilation work and runtime invari- handling library functions to overflow vulnerable buffers.
ant checking. The pre-compilation task involves de- Using a combination of stack modeling, library call event
termining which variables need monitoring, defining monitoring and the virtual memory mapping capability it is
invariants for those variables and exporting that in- possible for CuPIDS to automatically detect and generate

detection signatures for certain common classes of vulnera- tional activities such as protected variable lifetime events

bilities such as stack-based overflows. In many cases buffer (creation, accesses and deletion) as well as control flow

overflows use known library function such as strcopy(3). events (currently all function call entry and exits, to include

When CuPIDS is notified of a call to strcopy it can cre- library and syscall invocations) are passed to the CSP as

ate a copy on write (COW) mapping of the page(s) contain- well. The CSP receives these messages and uses them to en-

ing the buffer and surrounding memory region. If informa- sure the CPP is operating correctly. In the case of variables

tion about buffer sizes is available to the CSP, either auto- the CSP performs pre- and post-condition invariant check-

matically generated or inserted by the programmer in the ing, and in the case of flow control, it verifies that all func-

form of CuPIDS memory operation events it becomes pos- tion calls are to and from legitimate locations within the

sible for CuPIDS to not only detect and generate signatures CPP text segment. It also maintains a model of the CPP call

for anomalous events, but also to recover from them auto- stack and verifies all function returns are to the correct lo-
matically. It does so by using the saved copy of stack (or cations, etc.
heap) pages to recreate the process' memory state as it was
before the overflow, and copying only the correct amount of 4.1. Basic Capabilities
data into the buffer from the corrupted pages. While in the
case of an exploit attempt the data ending up in the buffer The CuPIDS architecture defines a number of capabili-

may not be what the CPP programmer intended, the over- ties that are used to perform ID.

all effect to the program is the same as if a safe string copy 4.1.1. Event Communication Interfaces We investi-
function such as stmcopy(3) had been used. In addition, er- gated how best to move information around the system, and
ror variables or signals may be set to indicate that some- selected two communications mechanisms to explore. The
thing unexpected occurred. first mechanism is based upon the syscall-based SysV mes-

sage interface. Using this interface a CPP creates a message

4. Implementation and sends it to the CSP using msgsnd(3). The CSP re-
ceives the message using msgrcv(3) and processes it. This

We have implemented a prototype CuPIDS. This sec- mechanism works well for low throughput traffic types
tion briefly describes the current state of that prototype. Our of activities such as focused invariant monitoring; how-

experimentation uses FreeBSD, currently 5.3-RELEASE ever, it does not perform well when large numbers of events
[21]. We have added to the operating system API a set of need to be communicated between processes. To facili-
CuPIDS-specific system calls that give CuPIDS processes tate high throughput needs such as that imposed by in-

visibility into and control over the execution of a CPP. Ex- strumenting all function, library, and system calls we

amples of the new functionality include the ability to map developed a high-speed, low-drag interrupt-based com-

an arbitrary portion of the PP's address space into the ad- munications mechanism. We observed that much of the
dress space of a CSP, a means by which signals destined cost in the SysV interface comes from the syscall in-
for and some interrupts caused by the CPP are routed to terface. A great deal of work is done after the kernel is

the monitoring CSP, etc. The operating system kernel has invoked simply to validate the syscall and route it appro-

been modified to perform the simultaneous task switching priately. The message interface itself is also quite complex

of CPPs and CSPs, a CSP protected loading capability as and that complexity adds more time costs to each in-

discussed above in section 3.2, and hooks into various ker- vocation of msgsnd or msgrcv. The combined effect of
nel data structures have been added to allow the CSP better these result in the execution of several thousand ma-

visibility into CPP operation and for runtime history data chine instructions for each syscall. We designed a soft-
gathering. ware interrupt-based mechanism for moving events be-

Our experimentation to date has focused on protecting tween CPP and a kernel buffer that only requires about 40

specific applications 3. We perform interactive monitoring machine instructions, thus eliminating much of the over-

based upon automatically generated instrumentation from head imposed upon the CPP by the SysV IPC. Section 5.2

the compiler as well as CPP programmer defined invari- describes the performance gains realized by this mecha-

ants for key variables. CuPIDS has the capability to exam- nism.
ine program binaries and extract explicit white-lists about We should note that we did not use a shared mem-

which system resources are used by the CPP, and then save ory message passing interface because of concerns that

this information in a form usable by the CSP. As the CPP a compromised CPP could easily defeat the CSP using

runs it sends messages to the CSP notifying it about opera- spoofed communications. By forcing the communications
to go through the kernel we gain the ability to verify the au-

3 The techniques involved are largely applicable to operating system thenticity of events 4 .
protection as well

4.1.2. Memory Mapping The CuPIDS architecture re-
quires that the CSP be able to directly monitor the virtual Start
memory space of the CPP. We added to FreeBSD a system
call that takes an address in the CPP process VM space and
maps that address into the CSP VM space. The mapping is
asymmetrical in that the CSP is aware of the shared mem- CuPIDS receives
ory but the CPP is not. The normal set of protections can be notification of program
applied to a mapping, but thus far we have not discovered a entry into monitored
need for anything other than CSP having read and write ac- region for var x
cess to the memory. Some of the self-healing and forensics
tasks require the ability to save old state, thus we provide
an ability to make copy on write (COW) mappings of mem- Map memory region
ory locations. This allows for efficient copying of modified Is x mapped No containing x into
pages using the kernel's existing and efficient VM manipu- into CuPIDS CupIDS memory

lation mechanisms. memo space

4.1.3. Interrupt Routing Hardware signals and interrupts
can be intercepted and routed to the CSP for handling. This
includes write protection faults for CPP, CSP, or kernel text Monitor changes to
segments. This mechanism allows the CSP to detect at- var x.
tempts by a process to modify its own code; this is true even
in the case where some mechanism such as a buffer over-
flow brought in code that sets up signal handlers to catch
this kind of fault. This ability of CuPIDS to validate sys- Halt process and
tem events that could lead to compromise is one of its key Was x No capture forensics
strengths. In this capacity it is acting as a reference valida- changedinformation about
tion mechanism [16]. process state that

4.1.4. Event Types There are a number of possible events l

generated in the CPP and in the kernel in response to CPP Yes

activity. Raise alert ab
Startup/Shutdown: The CuPIDS architecture requires

that when a CuPIDS production process is executing (actu-
ally running on a production CPU), that its associated pro-
tective process is executing on a CuPIDS CPU.

When the operating system is instructed to execute a pro-
tected program it first validates the integrity of both the Finishd
production and protective programs using a pre-computed
cryptographic signature or some other mechanism. If both
programs are valid, the O/S first loads the security process Figure 3. Variable Protection Flowchart
into memory, then the production process, and starts the se-
curity process executing on a security CPU. The security
process establishes any hooks it needs into the production ing of a protected variable. Here the protective process is

process' memory space and operating environment (wrap- notified of the production process' entry into a region in

pers around library and system calls, etc.). When the secu- which a watched variable may be modified. This notifica-

rity process is ready the O/S starts the production process tion may come from instrumentation embedded in the pro-

running on a production CPU. As the production process is duction process, or it may result from the protective process

switched onto and off of the production CPUs the operat- setting a tripwire in the instruction stream of the production

ing system ensures the protective security process is always process or on the variable's memory location. The pseudo

running whenever the production process is running. code illustrated in Figure 4 shows examples of the vari-
Variable Creation/Use/Deletion: The flowchart in Fig- able protection instrumentation embedded in the CPP (the

ure 3 depicts how CuPIDS performs interactive monitor- CuPIDS-var... calls invoke the CSP notification mech-
anism), while Figure 5 depicts the actions taken by the CSP

4 While this does assume the kernel has not been compromised we can upon notification that variable access is complete.
use CuPIDS-like techniques to protect the kernel as well Ideally, the programmer creating and using the variable

call pair events that are not in the white list but that oc-
CuPIDS_varcreate(varlD=0, cur during training sessions. Given some cleverness it

var--address = &protected-var); may be possible to construct a complete white list di-
•... rectly from the binary without requiring training runs;
CuPIDSvaraccessbegin (varID=O, however, it is simpler to handle it this way for our ini-

var_address = &protectedcvar); tial prototype.
cin >> protectedvar; These files are parsed by the CSP during initialization
CuPIDS_var_access_end(varID=0, and used to construct data structures which are used dur-

varaddress = &protected-var); ing the CPP's operation to validate it's activity. While the
... •current white list data is merely text, it is possible to imag-
CuP IDS_var_delete (varID=0); ine easy and effective means of cryptographically protect-

ing it from surrepticious modification.
White List Validation: CuPIDS currently uses the func-

Figure 4. CPP Variable Protection Code tion call entry/exit events to perform white-list validation of
control flow within the CPP. Each event contains a source
and destination address pair for each function that is called,

bool CheckVarOPostCondition (void *var) { and these pairs are compared by the CSP to allowed pairs.
if(*var > 42 I *var < 21) The same is true for library calls, intra-library calls, and sys-

return false tem calls. Any malfunction in the CPP process which leads
else to code being run in a pattern that is not in the white list will

return true be caught by the CSR In the case where the code makes a
... •call to a function it is not allowed to call, the illegitimate

//Msg access end handler function entry event will be caught by the CSR If the call
if(varlD = 0) into the function bypasses the prologue code and an entry

if (!CheckVarOPostCondition (vartaddress)) event is not generated, the exit event will be caught by the
RaiseAlarm); CSP.

4.1.6. Stack Monitoring CuPIDS uses function entry and
Figure 5. CSP Variable Protection Code exit events to model the CPP's program stack. Events that

break the stack model legitimately can be added to the white
list, either manually or automatically during training ses-

knows what values the variable can legitimately take on; sions. Examples of exceptional but legitimate events may
these values are used by CuPIDS as pre- and post-condition include setjmp/longjmp pairs and exception or signal han-
invariant tests used to validate the changes or attempted dlers.
changes to a variable. Other inputs are possible. For exam-
ple, the size of a buffer is known when it is created, and this 4.1.7. Enabled/Disabled Events It may not be possi-
information can be used by the protective process to deter- ble/desirable to enable all possible events. Therefore it
mine if data placed into a buffer overruns the ends of the may be useful to allow the CSP to enable or disable spe-
buffer. If the changes to the variable were legitimate, the cific events or blocks of events at runtime. Advantages
production process is allowed to continue execution. If not, to doing this include the ability to tune the level of in-
the protective process will take some action ranging from spection based upon factors such as timing (beginning
annotating the problem in a log to halting the production of software operation versus after it has been run-
process or potentially the entire system. In any case, it will ning for a while), external factors such as newly discovered
likely capture forensics information about the state of the threats, and increased attacker uncertainty (randomly turn-
production system leading to the erroneous value being en- ing on events makes it more difficult for the attacker
tered into the variable and the changes that took place. to work safely).A possible mechanism that would al-

low this behavior is creating a fully instrumented binary,
4.1.5. White Lists White List Creation: Currently constructing in the CSP's inputs a map of all the event gen-
the white list is created by parsing the program's bi- eaos n hndsbigteunee nsb rtn

nary file and extracting function, library, and sys- erators, and then disabling the unneeded ones by writing

tem call source/destination pairs and storing them in nops into the text in place of the calls to the function en-

files. This process is not precise; there are complica- try/exit routines. To re-enable the event the CSP can write

tions such as function pointers and occasional calls by the appropriate instructions back into the text.

non-CSP protected helper programs and libraries. Cur- 4.1.8. Spoofing Protection To protect against an attacker
rently CuPIDS has the ability to augment the white list with spoofing the interrupt-based IPC mechanism handlers cap-

ture the return address of the caller from the trap frame. We used gnats-3.113.12 because of the existence of a lo-
Thus, a spoofed call coming from an illegitimate location cally exploitable vulnerability 6. gnats was used to test Cu-
will be caught. PIDS' ability to detect invariant violations.

4.1.9. Forensics When CuPIDS detects problems in a We used the CuPIDS prototype to perform a number of

CPP it can freeze that process, write its entire state out to experiments, allowing us to demonstrate the validity of our

disk, and start up a new instance of the program. The saved research hypothesis. A detailed discussion of those results

state can include the normal core dump, the kernel struc- is available in [citation blinded], and summarized here.

tures related to the process, the state of any files in use
by the process at the time of error, and the runtime his- 5.1. Test Platform
tory stored in the CSP This data will allow for complete
analysis of the fault. The experiments described below were run on a MP

platform with dual Xeon 2.2GHz processors, 1G RAM, 1

5. Results 120GB ATAlOO drive. Hyperthreading (H'fl') was enabled
so the operating system had available 4 CPUs. We recog-

We have used this prototype to verify basic CuPIDS nize that the performance of HTT processors does not match
functionality. The system is able to correctly load and ex- that of separate CPUs[18]; however, the architecture is use-
ecute CPP and CSP components, the CSP is able to detect ful to us for other reasons. While the results discussed here
invariant and security policy violations as well as illegiti- do not make use of HIT specific features we do make use
mate control flow changes. Upon detecting a fault or attack, of the fact that they share architectural components as dis-
the CSP is able to halt the PP, raise an alarm, save the state cussed in [citation blinded] .For experiments involving Cu-
of the CPP's memory and execution trace history, and in PIDS, the CSP is the only user of CPU1, the instrumented
some cases repair the damage from the attack or error, al- ftpd uses all of one CPU's cycles, and the ftp client uses
lowing the CPP to continue execution without interruption, all of another CPU's cycles, and the system, including the
Time-related testing results are discussed below, test drivers, mostly run on the fourth CPU. The test drivers

The experiments described here demonstrate that it is ensure that all file 1/O is done on local drives so that net-
possible for one process to efficiently perform realtime run- work overhead does not become a factor. During the non-
time error checking on variables in another process as well instrumented experiments CPU1 is held idle to provide ftpd
as perform simple flow control validation. To demonstrate the same operating environment as it had in the instru-
the validity of our research hypothesis we demonstrate that mented runs. ftpd was run as root in standalone mode (com-
CuPIDS can provide guaranteed detection of certain attacks mand line ftpd -s, which causes it to stay in the fore-
before a context switching event occurs. This claim cannot ground and fork processes as needed).
be matched by a StUPIDS, even if equipped with a compa-
rable detector set. 5.2. Runtime Efficiency Tests using WU-FTP

In our experimentation we used a combination of widely-
used, open source applications and servers as well as ap- The initial experiments connect to the ftp daemon,
plications created specifically to test certain aspects of Cu- log in, and perform 300 ftp file transfers and one Is for
PIDS' functionality. The commonly used applications were a total of 301 transfers. The file transfer workload is
WU-FTP version 2.6.2 and gnats version 3.113.12. These 1,881,832,400 bytes and the overall workload per experi-
programs were chosen because they represent software typ- ment is 1,881,904,317 bytes. Three sets of five experimen-
ical of that used in our target environment, their source tal runs were made, one using the CuPIDS interrupt-based
code is available so that we could examine and instrument IPC, one using SysV IPC, and one baseline test was run
them, and because they contain exploitable vulnerabilities against a non-instrumented version of WU-FTP. The re-
as demonstrated by publicly available zero-day exploits, suits are summarized in Table 2.

WU-FTP's ftpd daemon was used to perform perfor- The initial tests are intended to measure the overhead
mance measurements of CuPIDS as well as to test CuPIDS' involved in getting CuPIDS events out of the CPP and
invariant violation detection and self-healing capabilities, into the CSP, therefore we constructed a worst-case event
The ftpd daemon was ideal for this purpose because it is load based on program flow control monitoring. In the in-
fairly large (about 20,000 lines of code), its behavior is rep- strumented tests, all function calls generate entry and exit
resentative of many server-type applications in that it runs events. This includes internal functions, libc and intra-libc
for long periods and forks off child processes to handle re-
quests, and finally because it has a number of buffer over- 5 CVE entries CVE-1999-0878, CAN-2003-0466, and CVE-1999-0368
flow vulncrabilities 5. [221

6 CVE CAN-2004-0623[22]

applications CuPIDS was able to detect an inter-
Event Communications Real Time Throughput nal function call that had been removed from the
Method (seconds) (MB/seconds) white list (simulating the activity of injected code that
Interrupt-based mean 130.02 14.9 makes calls to functionality embedded in the vulnera-
Interupt-based sdevn 01.52 03.05 ble application). CuPIDS was also able to detect calls
SysV IPC-based mean 241.38 13.77 into functions that bypassed the prologue event gener-
Nys-IP-stru ned stevn 28.19 0.11 ator. It did so by detecting illegitimate program stack
Non-Instrumented mean 118.50 16.16 activity in the stack model.
Non-Instrumented stdev 0.10. 0.02

Illegitimate Library Call Detection: Both gnats and
Table 1. WU-FTP Runtime Communication WU-FTP were used in these tests. In both applications
Performance Measurements CuPIDS was able to catch a call to a library function

which was removed from the white list.

Spoofing/Masquerading Detection: CuPIDS detected
calls as well as system calls. Each event includes caller ad- attempts to make library or system calls from loca-
dress and callee address information. These events are val- tions other than those specified in the white lists. This
idated against a white list of calls statically extracted from prevents attackers from performing masquerading at-
the ftpd binary. The initial white list contained all the le- tacks such as those described in [23]. The CuPIDS IPC
gitimate non-function-pointer-based function and shared li- mechanism guards against spoofed event generation by
brary calls as well as a list of all function pointer uses. including in each event the return address for the gen-
An initial experimental run identical to the timing runs was erating function as taken from the stack. As the address
made to train the CSP on the actual function pointer usage. is placed on the stack by the processor and reading it
The CSP received each function/library/system call event, occurs in kernel space there is no way for a user pro-
verified it against the white list, and used it to model the gram to spoof this information.
CSP's program stack. The timing related tests did not in-
clude embedded invariant tests. e Direct Variable Protection: WU-FTP was used for

Each experimental run took between two and four these experiments, which involved performing in-

minutes and generated approximately 1.4 million events variant testing on simple variables (int, char, simple

corresponding to WU-FTP's activities. As shown in Ta- structs) and a string buffer. As discussed earlier, Cu-

ble 2 the overhead of generating and using those events was PIDS was able to detect illegitimate changes to both

less than ten percent for the CuPIDS IPC as opposed to ap- classes of variables. In the case of a stack-based buffer

proximately 100 percent for the SysV-based IPC. Note overflow it was able to detect the overflow, save the

that this overhead should be balanced against the re- overflowing data, repair the corruption to memory fol-

moval of an inline IDS doing the same tasks. Even a stand- lowing the buffer, terminate the string in the buffer ap-

alone IDS with a similar detector set would be competing propriately (by writing a zero into the end of the

for CPU cycles with the CPP, likely degrading applica- buffer), allow the CPP to continue running, and write

tion performance. the overflow string and information about the over-
flow out to disk. In these experiments the detec-

5.3. Control Flow Change Results tion took place as the overflow occurred, so CuPIDS
was able to halt the CPP before it could return into

A number of experiments were run to validate CuPIDS' the corrupted instruction pointer on the stack. There-

ability to detect illegitimate control flows in the CPP. A fore the attack was stopped before any control flow

summary of those experiments is presented here and de- change took place-a capability unique to a paral-

scribed in more detail in [citation blinded], lel monitoring architecture such as CuPIDS. Even had
the buffer overflow not been directly detected, Cu-

"* Illegitimate Syscall Detection: Both gnats and WU- PIDS would have detected the control flow change to
FTP were used in these tests. In both applications a the stack and may have been able to make the same re-
buffer was overflowed in such a way that bytecode pair.
contained in the overflow string was executed. The in-
jected code made a number of system calls from the 5.4. Time to Detect
stack. CuPIDS was able to detect all of the illegitimate
system calls. We ran a number of experiments to determine how

"* Illegitimate Internal Function Call Detection: Both quickly CuPIDS detected illegitimate events. Two types
gnats and WU-FTP were used in these tests. In both of tests were run: one which performed an invariant

test upon notification that a variable access was com- Monitor Type MP Mode UP Mode
plete, and one in which real-time monitoring was used. (# instr) (# instr)
Measuring the detect times for these tests without a Simultaneous mean immediate 40.72 *10
hardware-based in-circuit emulator (ICE) proved challeng- Monitoring stdev 0.0 0.76 106
ing. Our theory stated that CuPIDS' ability to perform BMk Invariant mean immediate immediate
simultaneous monitoring of memory shared using the vir-
tual memory mapping capability would result in detec- Testing stdev 0.0 0.0
tion at the point the invariant was violated 7. Using the O/S Non-blk Invariant mean 52.07,10• 3.94 • 106
clocks to mark violation and detection times was not feasi- Testing stdev 18.63 * i03 10.81 * 106
ble because of the overwhelmingly large overhead imposed
by system calls. To quantify how quickly the CSP de- Table 2. WU-FTP Buffer Overflow Detect Mea-

tects a problem we instrumented the CPP by adding counter surements

that starts incrementing immediately following the com-
pletion of a monitored variable access. When the CSP de-
tects a violation it immediately takes a snapshot of this flect the scheduler-based non-determinism faced by all
counter. A buffer overflow in WU-FTP was used as the in- StUPIDS architectures.
variant violation. Each set of tests was run in both CuPIDS
multi-processor (MP) mode and StUPIDS uni-processor
(UP) mode. The results of these experiments are as fol- 6. Future Work
lows:

The architecture described is the initial work to achieve
Simultaneous Monitoring In these tests upon notification the broad goals of CuPIDS. The prototype is designed to

that a protected variable is to be accessed, a monitor- serve as a platform for future research and development in
ing task is started. In the CuPIDS case this monitor areas of intrusion detection, forensics, and other security re-
is placed on the CuPIDS CPU and runs alongside the lated tasks. In addition to completing an implementation of
CPP. In the StUPIDS case the monitor is scheduled as the CuPIDS architecture described in this paper and test-
is any other task and its execution is interleaved with ing our research hypothesis there are a number of related
the execution of the CPP. The average of 40 million in- avenues we intend to explore. These include overall self-
structions executed by the UP CPP before overflow de- protection and healing to enhance fault tolerance as well as
tection takes place compared to the immediate detec- support for computer forensics.
tion of the overflow in the CuPIDS CPP validates our
research theory-that architectures such as CuPIDS 6.1. 0/S Self-protection
can detect illegitimate events faster than can UP archi-
tectures. The growing body of work into mandatory access control

Blocking Invariant Checking In these tests, the CPP (MAC) mechanisms such as those based on Biba's integrity-
sends a blocking checkpoint event to the CSP im- based [24], and Bell and LaPadula's multi-level security
mediately following the variable access, to access- [25] models are used to provide a first-line defense against
ing the protected variable. Because the CPP is user application compromise. While MAC protection sys-
not allowed to continue execution until the invari- tems are not novel, the CuPIDS architecture uses hard-
ant test is complete it is not surprising that both MP ware protection mechanisms in commodity CPUs to define
and UP mechanisms immediately caught the over- and protect the MAC mechanism and CuPIDS themselves
flow. against direct attacks that attempt to bypass its controls.

Non-blocking Invariant Checking In these tests, the CPP
sends a non-blocking checkpoint event to the CSP 7. Conclusion
immediately following the variable access and con-
tinues execution. The consistant results from the Cu- We have proposed a paradigm shift in computer security,
PIDS CSP are expected, and reflect the amount of one that challenges conventional wisdom by trading per-
time it takes to perform the invariant test. The much formance for security. Our approach is based upon running
higher and inconsistent results from the UP CSP re- dedicated monitoring functions parallel with the code they

monitor on a MP system. We believe the CuPIDS archi-

7 Actually, at the point the cache snooping mechanism detected the tecture to be more effective than StUPIDS architectures in
shared usage of the memory location and propagated the change from terms of real-time detection of bad events as well as offering
the CPP's CPU into main memory and the CSP's CPU's cache, some novel detection techniques based upon the low-level

and parallel nature of the monitoring. By dedicating com- [13] X. Zhang, L. van Doom, T. Jaeger, R. Perez, and R. Sailer,
putational resources explicitly to security tasks we are trad- "Secure coprocessor-based intrusion detection," in ACM Eu-
ing performance for security; however, by offloading some ropean SIGOPS 2002, 2002.
security tasks from the production process into the secu- [14] J. Molina and W. A. Arbaugh, "Using independent auditors

rity process and running them in parallel we are decreas- as intrusion detection systems," in Proceedings of the Fourth

ing the workload of the system production components. We International Conference on Information and Communica-

have constructed a prototype of this architecture and used it tions Security (S. Qing, F Bao, and J Zhou, eds.), vol. 2513
of LNCS, pp. 291-302, 2002.

to not only validate CUPIDS' basic functionality, but more [15] T. Garfinkel and M. Rosenblum, "A virtual machine intro-
importantly verify that such systems are likely to b~e psy- spection based architecture for intrusion detection," in Proc.
chologically acceptable in terms of performance and ease Network and Distributed Systems Security Symposium, Feb-
of development. ruary 2003.

[16] J. P. Anderson, "Computer security technology planning
References study," Tech. Rep. ESD-TR-73-51, Vol. II, HQ Electronic

Systems Division (AFSC), Hanscom Field, Bedford, MA,
[1] B. A. Kuperman, A Categorization of Computer Security 01730, 1972.

Monitoring Systems and the Impact on the Design of Audit [17] R. Lipton, S. Rajagopalan, and D. Serpanos, "Spy: A method
Sources. PhD thesis, Purdue University, West Lafayette, IN, to secure clients for network services" in Proceedings of
08 2004. CERIAS TR 2004-26. the 22nd International Conference on Distributed Comput-

[2] J. H. Saltzer and M. D. Schroeder, "The protection of in- ing Systems Workshops, 2002.
formation in computer systems," Proceedings of the IEEE, [18] I. Tm-I, "Ia-32 Intel architecture software developers man-
vol. 63, pp. 1278-1308, September 1975. ual volume 1: Basic architecture.'

[3] S. Axelsson, "Intrusion detection systems: A survey and tax- [19] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating Sys-
onomy" Tech. Rep. 99-15, Chalmers Univ., Mar. 2000. tem Concepts. John Wiley & Sons, Inc., 2001.

[4] H. Patil and C. Fischer, "Low-cost, concurrent checking of [20] G. Hoglund and G. McGraw, Exploiting Software: How to
pointer and array accesses in C programs," Softw. Pract. Ex- Break Code. Pearson Higher Education, 2004.
per., vol. 27, no. 1, pp. 87-110, 1997. [21] TrustedBSD, "TrustedBSD." www.freebsd.org.

[5] H. Xu, W. Du, and S. J. Chapin, "Context Sensitive Anom- [22] Mitre, "Common vulnerabilities and exposures..'
aly Monitoring of Process Control Flow to Detect Mimicry [23] T. Ptacek and T. Newsham, "Insertion, evasion, and denial of
Attacks and Impossible Paths:' 2004. In Proceedings of the service: Eluding network intrusion detection:' tech. rep., Se-
Seventh International Symposium on Recent Advances in In- cure Networks, Inc., 1998.
trusion Detection. [24] K. Biba, "Integrity considerations for secure computer sys-

[6] H. H. Feng, 0. M. Kolesnikov, P. Fogla, W. Lee, and tems,"Tech. Rep. TR-3153, Mitre, Bedford, MA, Apr. 1977.
W. Gong, "Anomaly detection using call stack information," [25] D. E. Bell and L. J. LaPadula, "Secure computer systems:
in SP '03: Proceedings of the 2003 IEEE Symposium on Se- Mathematical foundations and model," Tech. Rep. M74-244,
curity and Privacy, p. 62, IEEE Computer Society, 2003. The MITRE Corp., Bedford MA, May 1973.

[7] R. Gopalakrishna, E. H. Spafford, and J. Vitek, "Efficient in-
trusion detection using automaton inlining," in Proceedings
of the 2005 IEEE Symposium on Security and Privacy, IEEE
Computer Society, 2005.

[8] D. Wagner and D. Dean, "Intrusion detection via static analy-
sis," in SP '01: Proceedings of the IEEE Symposium on Se-
curity and Privacy, p. 156, IEEE Computer Society, 2001.

[9] H. H. Feng, J. T. Giffin, Y Huang, S. Tha, W. Lee, and B. P.
Miller, "Formalizing sensitivity in static analysis for intru-
sion detection.," in IEEE Symposium on Security and Pri-
vacy, 2004.

[10] J. D. Tygar and B. Yee, "Dyad: A system for using physically
secure coprocessors," in IP Workshop Proceedings, 1994.

[11] W. A. Arbaugh, D. J. Farber, and J. M. Smith, "A secure
and reliable bootstrap architecture:' in In Proceedings 1997
IEEE Symposium on Security and Privacy, pages 65-71,
May 1997., 1997.

[12] 0. S. Saydjari, "LOCK: An Historical Perspective," in
Proceedings of the 18th Annual Computer Security Ap-
plications Conference, 2000, (www.acsac.org), pp. Online,
www.acsac.org, ACSAC, 2000.

r .| iIL [7 ZOO

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I 5.Jul.05 MAJOR REPORT
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

AN IMPLEMENTATION OF CUPIDS: EVALUATING THE EFFECTIVENESS OF
MULTI-PROCESSOR INFORMATION SYSTEM SECURITY.

6. AUTHOR(S)

CAPT WILLIAMS PAUL D

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

PURDUE UNIVERSITY REPORT NUMBER

C104-1128

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

THE DEPARTMENT OF THE AIR FORCE AGENCY REPORT NUMBER

AFIT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unlimited distribution D T A •in) ', ,TAT•T •. . -1 A
In Accordance With AFI 35-205/AFIT Sup 1 Approved for Public ReleaseI

Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF PAGES

11
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRAC
OF REPORT OF THIS PAGE OF ABSTRACT

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 238.18
Designed using Perform Pro, WHS/DIOR, Oct 94

THE VIEWS EXPRESSED IN THIS ARTICLE ARE
THOSE OF THE AUTHOR AND DO NOT REFLECT
THE OFFICIAL POLICY OR POSITION OF THE
UNITED STATES AIR FORCE, DEPARTMENT OF
DEFENSE, OR THE U.S. GOVERNMENT.

